Substitution takes the place of the derivative rules for problems such as product rule and quotient rule. The steps to substitution are:
1. Find a derivative inside the interval
2. set u = the non-derivative
3. take the derivative of u
4. substitute back in
e integration:
whatever is raised to the e power will be your u and du will be the derivative of u. For example:
e^2x-1dx
u=2x-1 du=2
rewrite the function as:
1/2{ e^u du, therefore
1/2e^2x-1+C will be the final answer.
related rates:
The steps for related rates are….
1. Pick out all variables
2. Pick out all equations
3. Pick out what you are looking for
4. Sketch a graph and label
5. Create an equation with your variables
6. Take the derivative respecting time
7. Substitute back into the derivative
8. Solve
limits:
Rules for Limits:…
1. if the degree of top equals the degree of bottom, the answer is the top coefficient over bottom coefficient
2. if top degree is bigger than bottom degree, the answer is positive or negative infinity
2. if top degree is less than bottom degree, the answer is 0
To find area between curves:
The formula you use is b(int)a (top eq.) - (bottom eq.).
If a and b is not already given to you, then you much set the equations equal to each other and solve.
You find which equation is top/bottom by graphing both and simply looking to see which one is on top.
If the area is on the y-axis, then the a and b values need to be set as y-values, and the equations must be solved for x.
First derivative test:
-take the derivative of the original function
-solve for x (the values will be your critical values)
-set those values up into intervals between negative infinity and infinity
- plug in numbers between the intervals into the function
-this will show you when the function is increasing, decreasing, and you will find max's and mins.
Second derivative test:
-take the derivative of the original function twice
-solve for x values(critical values)
-set up into intervals between infinity and negative infinity
-plug in values between the intervals into the function
-this will show you where the graph is concave up and down, and where there is a point of inflection.
Implicit Derivatives
The only difference between implicit derivatives and regular derivatives is that implicit derivatives include dy or y', the actual derivative of y.
y=x+2 y'=1
In an implicit derivative, you are always asked to solve for y'.
Example:
x^2+2y=0
1. Take derivative of both sides first.
2x+2y'=0
2. Then solve for y'.
y'=(-2x)/2
Some examples include:
4x+13y^2=4 y'=(-4/26y)
cos(x)=y y'=-sin(x)
y^3+y^2-5y-x^2=4 y'=2x/((3y+5)(y-1))
Find the volume of the solid formed by revolving the region bounded by the graphs of y=squareroot of x and y=x^2
after graphing in your graphing calculater you find that you need to use washers
so you get =(pie)S(squareroot of x)^2-(x^2)^2 dxx=1 so (pie)[(1/2)-(1/5)]-03(pie)/10 is your awnser
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment