Sunday, January 17, 2010

post 22

here is some stuff we can go over.
Related Rates:
1. Identify all variables and equations
2. Identify what you are looking for
3. Make a sketch and label
4. Write an equation involving your variables
5. Take the derivative with respect to time
6. Substitute in derivative and solve.


LRAM- left hand approximation. (this puts the rectangles used to find the area on the left side of the curve) x[f(a)+f(a+x)+...f(b)]
RRAM- right hand approximation. (this puts the rectangles used to find the area on the right side of the curve) x[f(a+x)+...f(b)]
MRAM- approximation from the middle. (this puts the rectangles right on top of the curve, so that the curve goes through the middle of each one) x[f(mid)+f(mid)+...]
Trapezoidal- this does not use squares, instead it uses trapezoids to eliminate most of the empty space inside the curve, and I think this is the most accurate. x/2[f(a)+2f(a+x)+2f(a+2x)+...f(b)]

Optimization can be used for finding the maximum/minimum amount of area of something. Steps in order to optimize anything:
1. Identify primary and secondary equations. Primary deals with the variable that is being maximized or minimized. The secondary equation is usually the other equation that ties in all the information given in the problem.
2. Solve the secondary equation for one variable and then plug that variable back into the primary. If the primary equation only have one variable you can skip this step.
3. Take the derivative of the primary equation after plugging in the variable, set it equal to zero, and then solve for the variable.
4. Plug that variable back into the secondary equation in order to solve for the last missing variable. Check endpoint if necessary to find the maximum or minimum answers

im not too good at doing most of the little thigns thats involved w/ every problem. I sometimes forget a negative or i forget to put a certain number. One thing im not too goodd at is angles of elevation and most optimization problems.

1 comment:

  1. for angle of elevation mainly what you do is the same steps as related rates the only difference is you are looking for an angle of a triangle in angle of elevation where as you are looking for a rate in related rate problems

    ReplyDelete