Saturday, April 10, 2010

post 33 and 34

The formula for the volume of disks is S (top)^2 - (bottom)^2 dx

The formula for the area of washers is S (top) - (bottom)

The steps are:
1. Draw the graphs of the equations
2. Subtract top graph's equation by the bottom graph's equation(in disks each equation would be squared)
3. Set equations equal and solve for x to find bounds
4. Plug in the bounds and the outcome of step 2
5. Integrate

volume by disks:

the formula is pi times the integral of the [function given] squared times dx. so just solve it by taking the integral of it and then pluging in the numbers they give you. just like before you'll have two numbers so whatever the answer is for the top one will be first and then you subtract the answer you get for the bottom one. then graph

volume by washers:

the formla is pie times the integral of the [top function] squared minus the [bottom function] squared times dx. so to do this, if you don't have the in between number you have to set the functions equal, but if you do, then it's worked the same way as above. square the formula's that were given and simplify. then take the integral of it and plug in the numbers they give you or you found by setting the formulas equal to each other and then solve like any other one by subracting them. then graph.

LRAM is left hand approximation and the formula is:
delta x [f(a) + f( delta x +a) .... + f( delta x - b)]

Say you are asked to calculate the left Riemann Sum for -4x -5 on the interval [-3, -1] divided into 2 subintervals.

delta x would equal: -1+3 /2 = 2/2 = 1
1[ f(-3) + f(-3 +1)]
1[ f( -3) + f(-2)]
then plug into your equation

RRAM is right hand approximation and the formula is:
delta x [ f(a + delta x) + .... + f(b)]
so using the same example:
1[ f( -2) + f(-1)] and then plug into your equation

MRAM is to calculate the middle and the formula is:
delta x [ f(mid) + f(mid) + .... ]
To find midpoints, you would add the two numbers together then divide by two
In this problem the numbers would be: -3 , -2, -1
-3 + -2/ 2 = -5/2 and -2 + -1 / 2 = -3/2
so 1[f(-5/2) + f(-3/2)] and the plug in

Trapezoidal is different because instead of multiplying by delta x, you multiply by delta x/2 and you also have on more term then your number of subintervals.
The formula is : delta x/2 [f(a) + 2f(a + delta x) + 2f(a+ 2 delta x) + ....f(b)]
For this problem: 1/2 [ f(-3) + 2 f(-2) + f( -1)] and then plug in.

Substitution takes the place of the derivative rules for problems such as product rule and quotient rule. The steps to substitution are:
1. Find a derivative inside the interval
2. set u = the non-derivative
3. take the derivative of u
4. substitute back in

e integration:

whatever is raised to the e power will be your u and du will be the derivative of u. For example:

e^2x-1dx
u=2x-1 du=2
rewrite the function as:
1/2{ e^u du, therefore
1/2e^2x-1+C will be the final answer.

related rates:

The steps for related rates are….


1. Pick out all variables
2. Pick out all equations
3. Pick out what you are looking for
4. Sketch a graph and label
5. Create an equation with your variables
6. Take the derivative respecting time
7. Substitute back into the derivative
8. Solve

Substitution takes the place of the derivative rules for problems such as product rule and quotient rule. The steps to substitution are:
1. Find a derivative inside the interval
2. set u = the non-derivative
3. take the derivative of u
4. substitute back in

MEAN VALUE THEOREM:
If f is continous on the closed interval [a,b] and differentiable on the open interval (a,b), then there exists a number c in (a,b) such that F'(c) = f(b) - f(a) / b-a\

EXTREME VALUE THEOREM:
the EVT states that a continuous function on a close interval [a,b], must have both a minimum and a maximum on the interval. However, the max and min can occur at the endpoints

steps for related rates:
1. Identify all variables
2. Identify what you are looking for
3. Sketch & label that graph
4. write an equation using all of the variables
5. Take the derivative of this equation
6. Substitute everything back in
7. Solve

Limits:

If the degree on top is bigger than the degree on the bottom, the limit is infinity
If the degree on top is smaller than the degree on the bottom, the limit is zero.
If the degree on the top is the same as the degree on the bottom, you divide the coefficients to get the limit.

If they give you a limit problem where there is any letter going to 0 and they have a huge problem with parenthesis in it, you take the derivative of what is behind the parenthesis and plug in for x if needed.

No comments:

Post a Comment