Just some throwback steps straight from my old notebook. thought they MIGHT be useful to some...
First Derivative Test:
1. Take the derivative of the original problem.
2. Set the first derivative equal to Zero.
3. Solve for x.
4. Create intervals for x. i.e. (-∞, 1) (1, 4) (4, ∞)
5. Pick a number in the intervals then plug that number in the first derivative for x.
6. Solve.
Second Derivative Test:
1. Take the derivative of the first derivative.
2. Set the second derivative equal to Zero.
3. Solve for x.
4. Create intervals for x. i.e. (-∞, 1) (1, 4) (4, ∞)
5. Pick a number in the intervals then plug that number in the second derivative for x.
6. Solve.
limits:
Rule #1 - When the degree (exponent) of the bottom is GREATER than the degree of the top, the limit is Zero.
Rule #2 - When the degree (exponent) of the bottom is SMALLER than the degree of the top, the limit is infinity. (positive or negative)
Rule #3 - When the degrees are equal, the limit is the coeffecients.
linierazation:
The steps for solving linearization problems are:
1. Pick out the equation
2. f(x)+f`(x)dx
3. Figure out your dx
4. Figure out your x
5. Plug in everything you get
implicit derivatives:
First Derivative:
1. take the derivative of both sides
2. everytime you take the derivative of y note it with dy/dx or y^1
3. solve for dy/dx
Second Derivative:
first you find the first derivative and solve it for dy/dx by using the steps for the first derivative steps.
you then take the second derivative of the solved equation. Plugging in d^2y/d^2x everytime you take the derivative of y again. and where you have dy/dx you plug in your solved equation for that.
once you have everything plugged in and ready to go you then solve for d^2y/d^2x
HOW TO FIND THE EQUATION OF A TANGENT LINE:
1. take f'(x)
2. plug x in to find your slope m
3. plug x into f(x)to get y
4. using m and (x,y) plug it into the equation (y-y1)=m(x-x1).
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment