1. Let f(x)=x^3+9x on [1,3].
(a) What is the average rate of change in f on [1,3]
f(3)-f(1)
Average rate=---------
3-1
=54-10
-----------
2
=22
(b) On what intervals is f ' (x) >0?
f '(x)=3x^2+9
=3(x^2+1)
Since x^2 +1 >0 for all x, f '(x)>0 for all x. Thus f ' (x)>0 on the interval of [1,3].
(c) Find a value c in the interval [1,3] such that the average rate of change in f over the interval [1,3] equals f ' (c).
f ' (c)=3c^2+9
22=3c^2+9
13=3c^2
c^2=13/3
=2.082
And....
Let g(x)=x-sin(pie x) on [0,2].
Find the Critical values of g.
g'(x)=1-pie cos (pie x)
0=1-(pie)cos((pie)x)
(pie)cos((pie)x)=1
cos((pie)x)=1/(pie)
(pie)x=cos^-1(1/pie)
cos^-1(1/pie)
x=--------------
pie
=o.397, 1.603
Can any one help me with Reames an example would help alot
No comments:
Post a Comment