Thursday, December 31, 2009

post 20

happpyyyyy new years !!!!!!!
unfortunatly schools about to start up again but oh well the holidays were nice while they lasted so here we go again...

First Derivative Test:
1. Take the derivative of the original problem.
2. Set the first derivative equal to Zero.
3. Solve for x.
4. Create intervals for x. i.e. (-∞, 1) (1, 4) (4, ∞)
5. Pick a number in the intervals then plug that number in the first derivative for x.
6. Solve.

Second Derivative Test:
1. Take the derivative of the first derivative.
2. Set the second derivative equal to Zero.
3. Solve for x.
4. Create intervals for x. i.e. (-∞, 1) (1, 4) (4, ∞)
5. Pick a number in the intervals then plug that number in the second derivative for x.
6. Solve.

limits:

Rule #1 - When the degree (exponent) of the bottom is GREATER than the degree of the top, the limit is Zero.
Rule #2 - When the degree (exponent) of the bottom is SMALLER than the degree of the top, the limit is infinity. (positive or negative)
Rule #3 - When the degrees are equal, the limit is the coeffecients.

linierazation:

The steps for solving linearization problems are:
1. Pick out the equation
2. f(x)+f`(x)dx
3. Figure out your dx
4. Figure out your x
5. Plug in everything you get

implicit derivatives:

First Derivative:
1. take the derivative of both sides
2. everytime you take the derivative of y note it with dy/dx or y^1
3. solve for dy/dx

Second Derivative:

first you find the first derivative and solve it for dy/dx by using the steps for the first derivative steps.
you then take the second derivative of the solved equation. Plugging in d^2y/d^2x everytime you take the derivative of y again. and where you have dy/dx you plug in your solved equation for that.
once you have everything plugged in and ready to go you then solve for d^2y/d^2x

Intermediate Value Theorem:

1. if f is continuous on [a,b] and k is any number between f(a)and f(b), then there is at least 1 number c when f(c)=k.
* basically you cannot skip any y value

HOW TO FIND THE EQUATION OF A TANGENT LINE:

1. take f1(x)
2. plug x in to find your slope m
3. plug x into f(x)to get y
4. using m and (x,y) plug it into the equation (y-y1)=m(x-x1).

No comments:

Post a Comment