Implicit Derivatives
The only difference between implicit derivatives and regular derivatives is that implicit derivatives include dy or y', the actual derivative of y.
y=x+2 y'=1
In an implicit derivative, you are always asked to solve for y'.
Example:
x^2+2y=0
1. Take derivative of both sides first.
2x+2y'=0
2. Then solve for y'.
y'=(-2x)/2
Some examples include:
4x+13y^2=4 y'=(-4/26y)
cos(x)=y y'=-sin(x)
y^3+y^2-5y-x^2=4 y'=2x/((3y+5)(y-1))
Some Derivative Formulas just for refreshing:
d/dx c=0 (c is a number)
d/dx cu=cu' (c is a number)
d/dx cx=c (c is a number)
d/dx u+v=u'+v' (also works the same for subtraction)
d/dx uv=uv'+vu'
d/dx u/v=(vu'-uv')/v^2
d/dx sinx=cosx(x')
d/dx cosx=-sinx(x')
d/dx tanx=sec^2x(x')
d/dx secx=secxtanx(x')
d/dx cscx=-cscxtanx(x')
d/dx cotx=-csc^2x(x')
d/dx lnu= 1/u(u')
d/dx e^u=e^u(u')
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment