Monday, December 21, 2009

jessie's 18th post

i was in mississippi this weekend so i hope that mrs robinson sees mine...but i thought i should put the stuff im shaky with on here just to review a little..sooo


The formula for the volume of disks is S (top)^2 - (bottom)^2 dx

The formula for the area of washers is S (top) - (bottom)

The steps are:
1. Draw the graphs of the equations
2. Subtract top graph's equation by the bottom graph's equation(in disks each equation would be squared)
3. Set equations equal and solve for x to find bounds
4. Plug in the bounds and the outcome of step 2
5. Integrate

volume by disks:

the formula is pi times the integral of the [function given] squared times dx. so just solve it by taking the integral of it and then pluging in the numbers they give you. just like before you'll have two numbers so whatever the answer is for the top one will be first and then you subtract the answer you get for the bottom one. then graph

volume by washers:

the formla is pie times the integral of the [top function] squared minus the [bottom function] squared times dx. so to do this, if you don't have the in between number you have to set the functions equal, but if you do, then it's worked the same way as above. square the formula's that were given and simplify. then take the integral of it and plug in the numbers they give you or you found by setting the formulas equal to each other and then solve like any other one by subracting them. then graph.

LRAM is left hand approximation and the formula is:
delta x [f(a) + f( delta x +a) .... + f( delta x - b)]

Say you are asked to calculate the left Riemann Sum for -4x -5 on the interval [-3, -1] divided into 2 subintervals.

delta x would equal: -1+3 /2 = 2/2 = 1
1[ f(-3) + f(-3 +1)]
1[ f( -3) + f(-2)]
then plug into your equation

RRAM is right hand approximation and the formula is:
delta x [ f(a + delta x) + .... + f(b)]
so using the same example:
1[ f( -2) + f(-1)] and then plug into your equation

MRAM is to calculate the middle and the formula is:
delta x [ f(mid) + f(mid) + .... ]
To find midpoints, you would add the two numbers together then divide by two
In this problem the numbers would be: -3 , -2, -1
-3 + -2/ 2 = -5/2 and -2 + -1 / 2 = -3/2
so 1[f(-5/2) + f(-3/2)] and the plug in

Trapezoidal is different because instead of multiplying by delta x, you multiply by delta x/2 and you also have on more term then your number of subintervals.
The formula is : delta x/2 [f(a) + 2f(a + delta x) + 2f(a+ 2 delta x) + ....f(b)]
For this problem: 1/2 [ f(-3) + 2 f(-2) + f( -1)] and then plug in.

No comments:

Post a Comment